Pretend model of traveling wave solution of two-dimensional K-dV equation
نویسندگان
چکیده
منابع مشابه
Travelling Wave Solution of Two-Dimensional Nonlinear KdV-Burgers Equation
Abstract In this study, we present two different methods a sech-tanh method and extended tanh-method to obtained the soliton solutions of the two-dimensional Korteweg-de Vries-Burgers (KdVB) equation with the initial conditions. These solutions include bright and dark solitary wave solutions, triangular solutions and complex line soliton wave solution. These solutions are stable and have applic...
متن کاملDifferential Transform Method to two-dimensional non-linear wave equation
In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...
متن کاملExact Traveling Wave Solution of Degasperis-Procesi Equation
In this paper, exact traveling wave solution of Degasperis–Procesi equation can be investigated via the first-integral method. By using the first-integral method which is based on the ring theory of commutative algebra, We construct exact traveling wave solution for Degasperis–Procesi equation , and the obtained solution agrees well with the previously known result.
متن کاملNUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical and Applied Physics
سال: 2013
ISSN: 2251-7235
DOI: 10.1186/2251-7235-7-64